
pf

D
<

/
^

in

j. THE ISIS PROJECT: Quarterly R&D Status and Technical Report

<£ May. 4,19Se - Anc), 1986

I Kenneth P. Btrman

DTiC
ELECTE
AU6 2 2 1988 D

5^. ADPR0VED POR PUBLIC RELEASE
a~ DISTRIBUTION UNLIMITED
CD

p^ This work was sponsored by the Defense Advanced Research Projects Agency (EtoD), ARPA
Order No. 5378, under contract MDA903-85-C-0124 issued by the department of the Army.

r*^ The view, opinions and findings contained in this report aie those of th« authors and should not
CT^f be construed as an official DoD position, policy, or decision.

86

& i^y ^s&&j£yy^±^

I REPORT DOCUMENTATION PAGE

W 1i. REPORT SlCURITY CLASSIFICATION
Unclassified

AMl2Ü£l _ 1 fxp Date Jun30. 986

lb RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY

2b DECLASSIFICATION/DOWNGRADING SCHEDULE

3 DISTRIBUTION/AVAILABILITY OF RFPORT

Approved for Public Release
Distribution Unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

■76't Cjjg
6* NAME OF PERFORMING ORGANIZATION

Kenneth P. Birman, Assist. Pti
CS Dept., Cornell University

6b OFFICE SYMBOL
f (If applicable)

7a NAME OF MONITORING ORGANIZATION

Defense Advanced Research Projects Agency/IPTO

6c. ADDRESS (Cty, State, and ZIP Code)
Computer Science Department
403 Upson Hall
Cornell University. Ithaca. NY 14853

7b ADDRESS (Oty, State, and ZlfCode)
Defense Advanced Research, Project Agency
Attn: TIO/Admin, 1400 Wilson Blvd.
Arlington, VA 22209

8a NAME OF FUNDING/SPONSORING
ORGANIZATION

DARFA/IPTO

8b OFFICE SYMBOL
(if applicable)

PROCUREMENT INSTRUMENT IDENTIFICAI lON NUMBER
si'.- -'

ARPA order 5378
Contract MDA^Q3-85-C-Q124

8c. ADDRESS (Oty, State, and ZIP Code)

Defense Advanced Research, Project. Agency
Attn: TIO/Admin., 1400 Wi] on Blvd.
Arlington, VA 22209

10 SOURCE OF FUNDING NUMBERS
PROGRAM
ELEMENT NO

PROJECT
NO

TASK
NO

WORK UNIT
ACCESSION NO

11 TITLE (Include Security Clatsification)

Quarterly R S, D Status Report Approved for Public Release
Distribution Unlimited

12 PERSONAL AUTHOR(S)
Kenneth P. Birman

13a TYPE OF REPORT
Quart. R&D Status Rep.

13b TIME COVERED
FROM 5/4/86 TO 8/4/86

1< DATE OF REPORT {Year. Month, Day)
8/4/86

15 PAGE COUNT

16 SUPPLEMENTARY NOTATION

17 COSATl CODES

FIELD GROUP SUB-GROUP

18 SUBJECT TERM' (Continue on reverse if necessary and identify by block number)

'9 ABSTRACT [Continue on reverse if necessary and identify by block number)

This quarterly R&D Status report covers the period between May 4, 1986 and

August 4, 1986.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT
(3 UNCLASSIFIED/UNLIMITED D SAP/IE AS RPT □ DTlC USERS

21 ABSTRACT SECURITY CLASSIFICATION

22a, NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (/nc/ude Area Cocrej ^c Oi-i-iCt SifvioO

DD FORM 1473,84 MAR 83 APR edition may be used until exhausted
All other editions are obsolete

SECURITY CLASSIFICATION OF THIS PAGE

■^^m^fi^lfM-ä^^
-v^%\v^ .^--CvCvv.v.v-

Academic Staff

Kenneth P. Birman, PrlncHal Investigator

Thomas A. Joseph, Reaarch Aasodste

Gradaate Students

Amr. EL Ahbadl

Kenneth Kane

RkhardKoo

Frank Sclunncfc

Patrick Stephenaon

Joseph Touch

By
D, f

OTIC TAP

U.-iannounce

IDUiioitl

Codes '

Dj.t ("^i' ar.(ii0r

M
spuciui

^x_

1-

L^A-^^S^V-iv'v^^ ■mj&^^t^r^t^y Jf-SKI* M-X\ «.•^ ^_, -a.,,** -?.. -".. -5.. ^.. .s\N\VVV.VVi

1. Dacrlptioa of Progre»

Tnis report summarizes accomplishment» of the ISIS project during the period May 4, 1986 -

Aug 4, 1986. We assume that the reader is familiar with the goals of the project and has read

some of our recent progress reports. Accordingly, the summary will be brief and targeted to

sDcdfic accomplishments made during thi« period, rather than the overall status of the project

During the second quarter of 1986, the /5/S effort focused on the continued development of

a new system for supporting fault-tolerant process groups and softwac built using such groups.

We have now begun to see widespread acceptance of this work among other researchers who have

struggled with synchronization issues in fault-tolerant distributed computing. By creating an

environment within which fault-tolerant distributed software can be constnxctcd with very little

attention to sychronization, cur approach makes it possible to solve problems that could take

months using conventional programming methods in days. Meanwhile, we have fleshed out our

own objectives, which are now to construct a complete support mechanism, imbedded into a distri-

buted open ting system, for simplified disiributed and fault-tolerant computing. /

ISIS is certainly not Jie only project working in this problem domain, but we teel that it has

been one of the most successful. The reason is essentially that where other groups have based

their effort on "blindingly fast remote procedure calls" (RFC) or "high speed multicast proto-

cols", ISIS has focused on integration of tools such as these into a complete, coherent environ-

ment. When doing so, we found that some of the basic mechanisms needed simply can't be

expressed in terms of RFC or conventional ra'.illicast protocols, and came up with our fault-

tolerant process jroup approach to address them. Thus, where other efforts have generally con-

cluded that it is extremely hard to build fault-toierant programä, ISIS has had repeated successes in

this domain. Our current work essentially seeks to package the mechanisms on which ISIS is

based in ways that will make them as accessible as possible to non-expert programmers. These

packaged solutions come in several flavors: fault-tolerant process groups, which combine a reliable

multicast RFC mechanism with a failure handling mechanism, resilient objects, which are pro-

Lt'jjLlj^^i^^s^jL^j^£^K,Jm^£fkA.^-i'-L^•'^'".■s^Smf*<*.<^*'A <^.-', '^•\ •Ct."',<* •'^-ü LW-;^v^,.-:«^--^'-..■r._-'- •',..f..■'

grammed using a specification language in which failures and replication are not explidlly

addressed, »nd then translated automatically into a fault-tolerant distributed program having the

desired behaviov, and bulletin boards, a new approach to Mipport interactions between asynchro-

nous prügrams in fault-tolerant distributed settings. Our premise is that if a wide variety of tools

can be provided to the distributed systems programmer, and if these tools are designed to over-

come many of the difficulties associated with execution in the presence of failures, then fault-

tolerant distributed software will eventually be as easily developed as conventional software. And,

we think that to date our results bctf out this approach - a claim few others could make.

1.1. Fault-tolei »nt proces groups

The crux of our present effort is to develop system support for fault-tolerant proces? groups

[1]. Such a group consists of a set cf processes that cooperate to implement some fault-tolerant

distributed service. Unlike other process group approaches, ours is well behaved despite con-

currency, failures, recoveries, aitJ dynamic reconfiguration. Moreover, members of a fault

tolerant process group can deduce the sequence of events of that other members have experienced

without running a special protocol for this purpose. In conventional approaches [2] [3], it is hard

to determine what other members have observed, hence specialized agreement protocols tend to

proliferate throughout any application programs that are exp«ted to perform reliably despite

failures, making it very difficult to debug such programs or to be at all - jnfident that they are

correct. Our approach essentially pushes such protocols to a lower level uf the communication

system, where client programs need not be aware of them. It also achieves high levels of con-

currency and makes it easy to monitor other processes for failure. Thus, high level code is

simpler to develop and debug, and good performance can still be achieved.

When wc start«! working on this approach we showed how it can be applied to clusters of

workstations, as might be seen in a typical local area network. During the past few weeks, we

succeeded in extending the protocols to make them useful in wide area networks too, completely

transparently. This extended treatment is described in a technical report [4], and will be published

-r. ■'. •■ '.

in thf ACM Transactions on Computer Systems shortly. Meanwhile, om implementation ot the

protocols is advancing smoothly, and we hope to have them running by early fall.

1.2. Itedllent objects

Resilient objects are basically distributed programs that mimic the behavior of an abstract

data type. They arc useful in distributed database applications, and are interesting because we

have shown hew to compile them automatically from specifications that doen't talk about fault-

tolerance at all. The output of this compilation is a fault-tolerant process group. Thus, the pro-

grammer who works with resilient objects need not be involved in the details of fault-tolerance.

Our new system will support resilient objects, but unlike in the prototype (where such objects wer?

the only facility supported), they will now be integrated with the other mechanisms described

here.

Our weak on resilient objects has wound down over the past year, and we are now beginning

to tie up the last loose ends. Ex-graduate student T. Raeuchle recently defended a Ph.D. disserta-

tion examining concurrency control issues in this are» [6]; he shows how to take advantage of

semantic information to obtain very low cost concurrency cjntrol mechanisms for a wide variety of

objects. Another graduate student, W. Deitrich, has worked on dynamic data migration in such

objects, and is nearly finished with an implementation that will demonstrate his methods. Deitrich

is hoping to write his dissertation this fall and defend it this coming winter.

1.3. Fautt-tolerant ImUetin boards

A fault-tolerant bulletin board is an asynchronous shared memory mechanism that provides

guarentecs of consistency despite failures and concurrency. Previous work on mrnraunication

mechanisms of this sort did not address consistency issues and behavior after failures, hence it was

hard to talk about fault-tolerance when using this approach to distributed computing. On the

other hand, several projects have shown that the approach is suprisingly powerful if failures and

consistency are not the primary concern. Our work extends this foundation to address both of

ife£ ■^^!\/^^_^\\tj^^!^^

these issues as well. We described this work in our earlier progress reports, pointing to a forth-

coming technical report [5]. That report has now been completed, and will be available within the

next week or two. In addition to describing the approach, it gives simple examples for a variety

of classic problems, like detecting deadlock or performing a tramaction on a replicated database,

which are hard to solve using standard techniques. Support for this approach is expected to be an

important part of our new ISIS system.

1.4. Other arcaa of activity

We are continuing our work on parallel versions of oar distributed sottwjire development

techniques, and hope to complete a paper on this topic during the next quarter of 1986. Work is

also continuing in the areas of partitioning, real time control, and command languages for process

control.

2. Trm'd

Birman visi;cd tht ANSA group in Cambridge, England, where he was invited to speak to a

workshop developing networking standards for use by industry in intercoimecting products. How-

ever, all travel exoenses were paid by the ANSA group.

tf^ A"' »*!■ fc'" X*)** *.*" »*' h"- ;.'" - ^j.^ .^ I."' •'* ."■ »"" -"■ ."* »"' '* - ''"-^ ' * 'j» 's " f ' '-" "•* '." ' ''» =',• ■'- "'. -"« p',* **m *'• ■^- '* rL*

3. Budget summary

We conclude with a summaiy of the fmandal status of the project, which is dose to projec-

tions in aU categories. Notice that some funds have been shifted from the student support line

into a hitrdware line. This was for the purchase of memory boards to upgrade our SUN 2/50

workstations to have 5 Mbytes of memory each, and was done with the permission of Program

Director Dennis Perry.

Expenditures - 5/5/86 - 8/4/86

Planned budget Expenses Prior Total
for period for period Expenses to 8/4/86

Seaetary support 1,542 1,542 1.028 2,570
Summer faculty 8,956 8,956 20,609 29,565
Research Associate 7,518 7,518 15,144 22,662
Programmer 9,000 9.000 9,000
Graduate students 4,800 4,800 96,039 100,839
Employee benefits 6,218 6,218 6,670 12,888
Computer maintenance 5,025 5,025
Publications 327 2,374 2,374
Supplies 253 249 3,553 3,802
Computsr Supplies 643 643
Travel 13,103 13,103
Programraei 1,006 1,006
Equipraert 16,800 16,800 67,993 84,793

Indirect cost 24,559 28,961 74,046 103,007

Totals 79,973 84,044 307,233 391.277

-6-

:£££&^&:£^ '-v--y""^-^'-'g-->"- ^'"'■"■»'^•^'-•--'r'-^"--'-^'" ''■■ -'TV;1V'^> ^'.i-V -•' L'».

4. References

[1] K. Birman and T. Joseph. Communication Support for Fault Tolerant Process Groups.

Proc Asilomar workshop on fauU-tolerant disaibuted computing, Springer Verlag. March 1986.

[2] Cheriton, D., Zwaencpocl, W. Distributed process groups in the V kernel. ACM TOCS 3, 2

(May 1985): 77-107.

[3] Cooper, E. Replicated distributed programs. Proc. ACM 10th SOSP, Orcas Island, WA

(Dec. 1985), 63-78.

[4] K. Birman and T. Joseph. Reliable communication in the presence of failures. Department

of Comp. Sd., Cornell University. Revision of TR 85-694 (Aug. 1985; revised Aug. 1986).

Accepted for publication, ACM TOCS.

[5] K. Birman, T. Joseph, P. Stephenson. Programming with fault-tolerant bulletin boards.

Department of Corap. Sei., Cornell University,/o/t/iromwg (August 1986).

[6] T. Raeuchlc. Concum.ricy control for nested objects. Dept. of Computer Science, Cornell

Univ. Ph.D. dusertatfan Forthcoming (Aug. 1986).

'»''-'-•-'>''^' i.'" ^-N^.'^i.'v-'»-."'. .'Vl'l -^ .'-^"^-•■-LVk'Vi.-^.'.'L'i.'L.VL ■A.J-'^-äj-A--'..^'-'»'^;^.-^.^' •.A^'-'l •»' •^,;Jl.j_\i-V;^ t.' n.', j As-.^-V ^j^j^ i^'1 i," ■ j'^Aj-'.

